Writing tips and writing guidelines for students. Case study samples, admission essay examples, book reviews, paper writing tips, college essays, research proposal samples.
Monday, May 27, 2019
The Effects of Internet Addiction to Lifestyle and Dietary Behavior
keep Research and Practice (Nutr Res Pract) 20104(1)51-57 DOI 10. 4162/nrp. 2010. 4. 1. 51 The effects of network dependance on the life-style and fodderary behavior of Korean adolescents Yeonsoo Kim *, Jin Young Park *, Sung Byuk Kim , In-Kyung Jung , Yun Sook Lim and Jung-Hyun Kim 1 2 1 2 3 4 5 4School of Human Ecology, Nutrition and nutrimentetics Program, Louisiana Tech University, LA 71272 USA Graduate train of Education, Chung-Ang University, Seoul 156-756, Korea 3 Ministry for wellness, Welfare and Family Affairs, Seoul 110-793, Korea 4 Department of Home Economics Education, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 156-756, Korea 5 Department of Food and Nutrition, Kyung Hee University, Seoul 130-701, Korea Abstract We per nominateed this study to examine lifestyle patterns and alimentary behavior ground on the direct of net colony of Korean adolescents.Data were collected from 853 Korean junior lavishly indoctrinate students. The level of network dependency was fit(p) based on the Korean net income colony self- photographic plate short form for youth, and students were classified as uncollectible meshwork substance abusers, potential- seek network users, and no put on the line internet users. The associations between the students levels of net income dependency and lifestyle patterns and dietetical behavior were analyze using a chi-square test. Ir well-ordered bedtimes and the use of alcohol and baccy were high(prenominal) in unsound profits users than no take a chance net users.Moreover, in high-risk profits users, freedom fighter dietary behavior due to the loss of craving, a high frequency of skipping meals, and snacking might cause imbalances in nutritional intake. Diet tonicity in high-risk Internet users was spendthriftly worse than in potential-risk Internet users and no risk Internet users. We demonst measured in this study that high-risk Internet users have inappropriate dietary behavior and unretentive diet quality, which could result in stunted growth and festering.Therefore, nutrition education targeting high-risk Internet users should be conducted to ensure proper growth and rearment. Key Words Internet addiction, dietary behavior, diet quality, adolescents Introduction8) The Internet has become an important tool for social interaction, information, and entertainment 1. However, as the Internet has moved into homes, schools, Internet cafes, and businesses, the prevalence of Internet addiction has been increasing rapidly. Internet addiction is characterized as poorly controlled Internet use, and send away lead to impulse-control disorders 2.Recently, Internet addiction, especially among adolescents, has been recognized as an important social issue in sundry(a) countries because of the high prevalence of depression, aggressive behavior, psychiatric symptoms, and interpersonal problems associated with this addiction 3,4. The incidence of Internet addiction in ado lescents was estimated to be approximately 11% in chinaware 2, 8% in Greece 5, and 18. 4% in Korea 1. Adolescents are more vulnerable to Internet addiction than self-aggrandizings, and the social performance, psychology, and lifestyle habits of Internet addicts can be unnatural by this addiction 6.Numerous cross-sectional studies have shown that Internet addiction has an adverse effect on several lifestyle-related factors in adolescents it can result in irregular dietary habits, extended periods of time spent on the Internet 7, physical inactivity, short duration of repose 2, and increased use of alcohol and baccy 2,8,9. Some studies have report that the budge in lifestylerelated factors caused by heavy Internet use could have an adverse refer on the growth and development of Internet addicts 2,7. Nutritional status also plays a crucial role in growth and development during adolescence.Several studies have shown that malnutrition or unbalanced nutritional intake can reduce we ight gain and decrease leg length in adolescents 9,10. Optimal nutrition is therefore important for adolescents to grow and develop properly. Moreover, once dietary habits are formed during childhood, they tend to be carried on throughout adulthood, thus teaching adolescents to develop healthy sweep awaying habits is of critical importance 11. Numerous studies have showed associations between Internet addiction and mental health problems, such as depression and psychiatric symptoms, among adolescents.However, information on the effects of Internet addiction on the dietary behavior of * Yeonsoo Kim and Jin Young Park are Co-first authors. Corresponding Author Jung-Hyun Kim, Tel. 82-2-820-5278, Fax. 82-2-817-7304, Email. emailprotected ac. kr Received November 17, 2009, Revised February 16, 2010, Accepted February 16, 2010 ? 2010 The Korean Nutrition Society and the Korean Society of Community Nutrition This is an Open Access article distributed under the terms of the Creative Co mmons Attribution Non-Commercial License (http//creativecommons. rg/licenses/by-nc/3. 0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 52 The effect of Internet addiction on dietary behavior adolescents is limited. Therefore, in this study, we examined the dietary behavior of Korean adolescents according to their level of Internet addiction. income per month, and the education level of the parents. A lifestyle habit questionnaire assessed the regularity of bedtime, sleep disturbance, and the use of alcohol and tobacco. dietetical behaviors and diet quality The dietary behavior questionnaire assessed recent changes in meal size, appetite, eating speed, frequency and reasons for skipping meals, and the frequency, type, and reasons for snacking. Diet quality was assessed by a 10-item mini-dietary judicial decision power. The mini-dietary sagacity index was used to assess overall dietary qua lity based on the 2005 Dietary Guidelines and Food Tower for Koreans 13. This index includes four feed groups that should be consumed, four food groups that limited amounts of should be consumed, and two items regarding varied and regular diet.Responses to food items of which sufficient amounts should be consumed were reported using a 5-point Likert scale where 1=seldom, 3=sometimes, and 5=always. Responses to food items of which limited quantities should be consumed were also reported using a 5-point Likert scale where 1=always, 3=sometimes, and 5=seldom. The uttermost possible pip for diet quality is 50. In this study, diet quality was defined as good if the hit score was greater than or come to to 30 14. Statistical analyses All analyses were performed with a significance level of ? =0. 05 using the SPSS software package version 12. (SPSS Inc, Chicago, IL, USA). Relationships between levels of Internet addiction and socio-demographic characteristics, lifestyle patterns, and dietary behavior were analyzed using the chi-square test. The relationship between dietary quality and level of Internet addiction based on the self-scale rating system were analyzed using one-way ANOVA followed by Duncans multiple range test for multiple comparisons. Subjects and Methods Subjects This cross-sectional study included 1,000 adolescents from grades 7 through 9 living in Seoul, Korea. Of 1,000 participants, 800 students were recruited from eight junior high schools.The remaining 200 subjects were recruited from the Korean Youth Counseling Institute (KYCI), where they had been diagnosed and were being treated as Internet addicts. The study was conducted from October 2008 to November 2008. The Institutional Review Board of Chung-Ang University (Seoul, Korea) deemed this study exempt from the requirement for informed consent. Of the 1,000 surveys administered and collected, 147 were excluded due to incomplete responses and difficulty in assessing the level of Internet addi ction, thus a total of 853 samples were analyzed in this study.Korean Internet addiction test (KS scale) Internet addiction was evaluated using the Korean version of the Internet addiction self-scale short form (KS scale) for youth, which was developed by the Korea Agency for Digital Opportunity and Promotion 12. In brief, the KS scale for adolescents is a 20-item self-report questionnaire, consisting of six core components disturbance of workaday routines, self-esteem, withdrawal, virtual interpersonal relationship, deviant behavior, and tolerance.Response to each question is on 4-point Likert scale where 1 corresponds to not at all, 2 corresponds to sometimes, 3 corresponds to frequently, and 4 corresponds to always. The level of Internet addiction was categorized as either high-risk, potential-risk, or no risk based on the total score and the score for the three components of disturbance of daily routines, withdrawal, and tolerance. Subjects were classified as high-risk Internet users if their total score was the same or greater than 52, and/or if the score for disturbance of daily routine, withdrawal, and tolerance was greater than 16, 10, and 12, respectively.Subjects were classified as potential-risk Internet users if their total score was greater than or equal to 48 and particular than 52 and/or if their score for disturbance of daily routine, withdrawal, and tolerance was greater than 14, 9, and 11, respectively. Subjects were classified as no risk Internet users if their total score was slight than 48. Subject characteristics and lifestyle patterns The following socio-demographic characteristics of subjects were used in this analysis age at the time of recruitment, family ResultsGeneral characteristics of subjects The general characteristics of the participants and the relationships between the level of Internet addiction and general characteristics are provided in card 1. Subjects were between the ages of 13 and 15 years with a mean age of 14. 0 years. More boys were high-risk Internet users than girls (31. 4% vs. 14. 0%), and more girls were no risk Internet users than boys (74. 7% vs. 58. 9%). Younger adolescents were importantly more in all probability to be highrisk Internet users than honest-to-god adolescents (P 0. 001).Household monthly income was significantly related to the level of Internet addiction adolescents from households with a low monthly income ( 1,000 K won and 1,000 K-1,999 K won) were more likely to be high-risk Internet users (57. 5% and 31. 7%, respectively) Yeonsoo Kim et al. Table 1. Subject characteristics based on level of Internet addiction High risk (n=186) sexuality Boys Girls Age (years) 13 14 15 Monthly income (Korean Won)2) 1,000K 1,000K-1,999K 2,000K-2,999K 3,000K-3,999K ? 4,000K 53 say-so risk (n=90) 37 (9. 7) 53 (11. 3) 15 (7. 0) 46 (14. 5) 29 (9. 0) 3 (7. 5) 15 (12. 5) 25 (15. 8) 14 (7. 7) 28 (10. ) 28 (9. 7) 37 (10. 5) 17 (15. 2) 1 (4. 8) 41 (10. 4) 31 (10. 1) 9 (17. 3) 3 (13. 1 ) No risk (n=577) 225 (58. 9) 352 (74. 7) 126 (59. 2) 213 (67. 2) 238 (73. 7) 14 (35. 0) 67 (55. 8) 98 (62. 0) 139 (76. 4) 205 (74. 3) 183 (63. 1) 254 (72. 2) 78 (69. 6) 8 (30. 1) 261 (66. 2) 220 (71. 9) 36 (69. 2) 9 (39. 1) Total (n=853) 382 (100. 0) 471 (100. 0) 213 (100. 0) 317 (100. 0) 323 (100. 0) 40 (100. 0) 120 (100. 0) 158 (100. 0) 182 (100. 0) 276 (100. 0) 290 (100. 0) 352 (100. 0) 112 (100. 0) 21 (100. 0) 394 (100. 0) 306 (100. 0) 52 (100. 0) 23 (100. 0) P-value 0. 001 120 (31. 4)1) 66 (14. 0) 72 (33. 8) 58 (18. 3) 56 (17. ) 23 (57. 5) 38 (31. 7) 35 (22. 2) 29 (15. 9) 43 (15. 6) 79 (27. 2) 61 (17. 3) 17 (15. 2) 12 (57. 1) 92 (22. 4) 55 (18. 0) 7 (13. 5) 11 (47. 8) 0. 001 0. 001 captures education High school graduate & under College graduate Graduate school graduate Others Mothers education High school graduate & under College graduate Graduate school graduate Others 1) 0. 001 0. 008 N (%) 2) 1,250 Korean won = 1US dollar Table 2. KS-scale scores based on the level of Internet addiction Components Disturbance of daily routine Self-esteem Withdrawal Virtual interpersonal relationship Deviant behavior Tolerance Total 1) 2) maximal score 24 4 16 12 8 16 80 High risk (n=186) 14. 97 3. 21 1)a2) a a Potential risk (n=90) 13. 90 3. 25 1. 69 0. 84 4. 56 1. 89 3. 93 1. 46 8. 76 2. 64 5. 22 2. 21 b b c No risk (n=577) 9. 32 2. 21 1. 32 0. 61 5. 49 1. 50 3. 78 1. 41 2. 87 1. 07 5. 90 2. 04 c c Total (n=853) 11. 04 3. 59 1. 60 0. 85 6. 88 2. 82 4. 62 2. 58 3. 48 1. 55 7. 23 3. 07 34. 90 11. 48 2. 41 0. 94 7. 23 2. 54 10. 56 2. 59 5. 16 1. 53 b c c c c a a a a b b b b 10. 61 2. 97 50. 95 8. 41 41. 06 5. 29 28. 69 6. 36 Mean S.D Values with disparate superscript letters within a row are significantly different after Duncans multiple range test (P 0. 05). than adolescents from households with a higher monthly income. Adolescents from households with high monthly incomes (3,000K-3,999K won and ? 4,000K won) were more likely to be no risk Internet users (76. 4% and 74. 3%, respectively). Parents educational status also affected the level of Internet addiction. High-risk Internet users had parents whose highest level of education was high school graduation or less (27. 2% in bugger off and 22. 4% in mother, respectively).In contrast, a high proportion of no risk Internet users had parents who were college graduates (72. 2% in father and 71. 9% in mother, respectively). KS-scale score The total KS-scale score and the scores of the six components of the KS-scale are presented in Table 2. High-risk Internet users had significantly higher total KS-scale scores and scores for the six main components than potential-risk Internet users and no risk Internet users (P 0. 05). Lifestyle patterns Lifestyle patterns, including bedtime, sleep disturbance, alcohol use, and tobacco use according to the level of Internet addiction are shown in Table 3.No risk Internet users had regular bedtime patterns (10. 4% always had a r egular bedtime and 41. 8% often had a regular bedtime) while high-risk Internet users complained of irregular bedtime patterns (13. 6% reported often irregular bedtimes and 11. 4% reported always irregular bedtimes). Both high- and potential-risk Internet users suffered from sleep disturbances (81. 1% and 76. 7%, respectively). Similarly, 66% of 54 The effect of Internet addiction on dietary behavior Table 5. Snacking patterns based on the level of Internet addiction P-value Skipping breakfast 20 (10. 9)1) 15 (16. ) 49 (26. 6) 60 (10. 4) 95 (11. 2) 0. 001 Yes No Skipping Lunch Yes No Skipping Dinner Yes No Oversleep No appetite Indigestion Snacking before a meal Weight loss Saving money Lack of time Habit Others ? 3 times/day Table 3. Lifestyle patterns based on the level of Internet addiction High risk (n=186) Bedtime Always regular Often regular 25 (27. 8) 241 (41. 8) 315 (37. 0) 30 (33. 3) 229 (39. 7) 328 (38. 5) 14 (15. 6) 6 (6. 7) 32 (5. 5) 15 (2. 6) 71 (8. 3) 42 (4. 9) Potent ial risk (n=90) No risk (n=577) Total (n=853) High risk (n=186) Potential risk (n=90) No risk (n=577) Total (n=853)P-value 0. 683 88 (47. 3) 1) 43 (48. 3) 228 (40. 1) 359 (42. 6) 46 (51. 7) 340 (59. 9) 484 (57. 4) 0. 177 6 (6. 8) 34 (6. 0) 56 (6. 7) 0. 049 98 (52. 7) 16 (8. 6) Neither regular or 69 (37. 5) irregular Often irregular Always irregular Sleep disturbance Yes No Alcohol use Yes No Tobacco use Yes No 1) 25 (13. 6) 21 (11. 4) 170 (91. 4) 82 (93. 2) 531 (94. 0) 783 (93. 3) 38 (20. 4) 15 (17. 1) 80 (14. 1) 133 (17. 0) 150 (81. 1) 69 (76. 7) 278 (48. 3) 497 (58. 4) 0. 001 35 (18. 9) 21 (23. 3) 298 (51. 7) 354 (41. 6) 148 (79. 6) 73 (82. 9) 486 (85. 9) 707 (82. 8) 49 (28. 3) 34 (19. 7) 6 (3. ) 8 (4. 6) 10 (5. 6) 2 (2. 9) 25 (14. 5) 18 (10. 4) 18 (10. 4) 29 (15. 8) 51 (27. 7) 86 (55. 5) 4 (2. 6) 21 (13. 5) 22 (26. 2) 112 (21. 3) 183 (23. 4) 20 (23. 8) 122 (23. 2) 176 (22. 5) 6 (7. 1) 5 (6. 0) 8 (9. 5) 0 (0. 0) 6 (7. 1) 7 (8. 3) 13 (14. 4) 29 (5. 5) 21 (4. 0) 38 (7. 2) 2 (0. 4) 40 (7. 6) 44 (8. 4) 55 (9. 7) 41 (5. 2) 34 (4. 3) 56 (7. 2) 7 (0. 9) 64 (8. 2) 69 (8. 8) 97 (11. 5) 0. 004 0. 026 Reasons for meal skipping 123 (66. 5) 58 (64. 4) 252 (43. 7) 433 (50. 8) 0. 001 62 (33. 5) 97 (52. 4) 88 (47. 6) 32 (35. 6) 325 (56. 3) 419 (49. 2) 28 (31. 1) 90 (15. 6) 215 (25. 2) 0. 01 62 (68. 9) 897 (84. 4) 637 (74. 8) N (%) Table 4. Recent changes in dietary habits based on the level of Internet addiction High risk (n=186) Changes in meal size Increased Decreased No change Changes in appetite Worse Bad No change Better Do not know Fast Average Slow Irregular 1) 10 (11. 9) 118 (22. 4) 153 (19. 5) Potential risk (n=90) No risk (n=577) Total (n=853) P-value Frequency of snacking 1-2/day 104 (56. 5) 65 (72. 2) 396 (69. 8) 565 (67. 2) 12 (13. 3) 116 (20. 5) 179 (21. 3) 50 (60. 2) 239 (47. 2) 375 (50. 4) 4 (4. 8) 8 (9. 6) 38 (7. 5) 46 (6. 2) 73 (14. 4) 102 (13. 7) 0. 245 4 (29. 0)1) 29 (32. 2) 164 (28. 6) 247 (29. 1) 62 (33. 3) 70 (37. 6) 25 (13. 4) 30 (16. 1) 72 (38. 7 ) 17 (9. 1) 42 (22. 6) 64 (34. 4) 71 (38. 2) 32 (17. 2) 19 (10. 2) 20 (22. 2) 127 (22. 2) 209 (24. 6) 41 (45. 6) 282 (49. 2) 393 (46. 3) 7 (7. 8) 11 (12. 2) 8 (8. 9) 21 (3. 7) 53 (6. 2) 0. 019 None Snack items Confectionery Soda 0. 001 80 (13. 9) 121 (14. 2) 78 (13. 6) 103 (12. 1) 43 (47. 8) 254 (44. 2) 369 (43. 4) 21 (23. 3) 142 (24. 7) 205 (24. 1) 37 (41. 1) 173 (30. 0) 274 (32. 2) 33 (36. 7) 271 (47. 0) 375 (44. 0) 11 (12. 2) 109 (18. 9) 152 (17. 8) 9 (10. 0) 23 (4. 0) 51 (6. 0) 0. 002Ttokbokki, rameon, fried foods Fast foods Fruits Milk Others Hunger Lack of time for a meal Habit Boredom loving event Others 1) 12 (7. 7) 14 (9. 0) 15 (9. 7) 3 (1. 9) 86 (46. 7) 10 (5. 4) 28 (15. 2) 33 (17. 9) 17 (9. 2) 10 (5. 4) 3 (3. 6) 9 (10. 8) 8 (9. 6) 1 (1. 2) 26 (5. 1) 61 (12. 1) 55 (10. 9) 14 (2. 8) 41 (5. 5) 84 (11. 3) 78 (10. 5) 18 (2. 4) 0. 057 Changes in eating speed Reasons for snacking 46 (51. 1) 319 (55. 6) 451 (53. 2) 1 (1. 1) 22 (24. 4) 14 (15. 6) 5 (5. 6) 2 (2. 2) 30 (5. 2) 41 (4 . 8) N (%) 79 (13. 8) 129 (15. 2) 98 (17. 1) 145 (17. 1) 34 (5. 9) 14 (2. 4) 56 (6. 6) 26 (3. 1) igh-risk Internet users and 64% of potential-risk Internet users had used alcohol. Fifty-two percent of high-risk Internet users had used tobacco while only 15. 6% of no risk Internet users had used tobacco. Dietary behavior and diet quality Recent changes in eating habits among adolescents are provided in Table 4. More of high-risk Internet users answered that their dietary habits had been changed to have puny meal sizes, a poor appetite, and irregular eating speeds than no risk Internet users (P=0. 019, 0. 001, and 0. 002, respectively). High-risk Internet N (%) users had a high prevalence of skipping dinner (Table 5).High-risk Internet users snacked frequently, often snacking more than three times per day (15. 8% vs. 9. 7 % for no risk Internet users). Favorite snacks and reasons for snacking were not significantly different among adolescents based on levels of Internet addiction. D iet quality based on levels of Internet addiction is shown Yeonsoo Kim et al. Table 6. Diet quality based on the level of Internet addiction High risk (n=186) Potential risk (n=90) No risk (n=577) 3. 40 1. 52b Total (n=853) 3. 25 1. 58 1) 55 I eat more than one 2. 72 1. 722)a3) 3. 36 1. 36b serving of milk or dairy products every day.I eat several servings of heart, fish, egg, bean, or bean curd every day. I eat vegetables and Kimchi every meal. I eat one serving of harvesting or fruit juice every day. I eat three meals a day on a regular basis. I eat a variety of foods every day. I eat fried or stir-fried foods most of the time. I eat fatty meat most of the time. I add table salt or soy sauce to foods most of the time. I eat ice cream, cake, and/or drink soda between meals. Total 1) 2. 86 1. 50a 3. 04 1. 48a 3. 35 1. 41b 3. 21 1. 44 2. 83 1. 63a 2. 91 1. 69a 3. 11 1. 48ab 3. 43 1. 45b 3. 38 1. 49b 3. 45 1. 55b 3. 26 1. 51 3. 32 1. 9 2. 58 1. 56a 2. 98 1. 63b 3. 32 1. 59c 3. 12 1. 62 2. 86 1. 60a 2. 85 1. 57a 2. 98 1. 48a 2. 78 1. 42a 3. 38 1. 45b 3. 35 1. 45b 3. 16 1. 42 3. 18 1. 49 2. 72 1. 50a 3. 26 1. 67a 2. 73 1. 50a 3. 07 1. 59a 3. 28 1. 56b 3. 53 1. 52b 3. 10 1. 58 3. 42 1. 57 2. 80 1. 72a 2. 80 1. 50a 3. 29 1. 54b 3. 13 1. 59 28. 38 6. 34a 30. 22 6. 79b 33. 75 6. 01c 32. 20 6. 57 Diet quality was assessed by using 10-item mini-dietary assessment index developed by Kim 14. Mean SD 3) Values with different superscript letters within a row are significantly different (P 0. 5) after Duncans multiple range test. 2) in Table 6. The diet quality of high-risk Internet users was significantly lower than that of potential-risk Internet users and no risk Internet users, respectively (P 0. 05). Discussion In this study, we demonstrated that high-risk Internet users eat smaller meals, have less of an appetite, skip meals, and snack more than their potential-risk and normal-risk Internet user counterparts. Moreover, t he diet quality of high-risk Internet users is poorer than that of potential-risk Internet users and no risk Internet users.The frequency of skipping dinner in high-risk Internet users was significantly higher than that in no risk Internet users. This finding is consistent with a study by Kim and Chun that reported a high incidence of meal skipping in Internet addicts 7. The high frequency of skipping dinner could be related to snacking more frequent snacking was observed in high-risk Internet users than no risk Internet users. Savige et al. also reported that adolescent heavy snackers skipped dinner more frequently than their non- or light-snacker adolescent counterparts 15.Moreover, the favorite snacks of our participants were confectionery and fast food, which are nutritionally poor foods with high calories provided by fats and simple sugars but with few other nutrients such as vitamins and minerals. Thus high-risk Internet users have improper dietary behaviors that could impact their growth and development. The quality of the diet of high-risk Internet users as measured using a mini-dietary assessment index was poor. The mini-dietary assessment index that we used is a Korean version of the Healthy Eating Index in which scores over 30 indicate a good quality diet.In high-risk Internet users, the average total score was 28. 38, which indicates an inappropriate diet quality. High-risk Internet users had the lowest meal regularity score, reflected by a higher rate of skipping dinner in high-risk Internet users than no risk Internet users. Moreover, high-risk Internet users did not consume enough milk and dairy products, meat and fish, and fruits and vegetables compared with no risk Internet users. Proper intake of milk and dairy products as major sources of calcium during childhood is crucial for achieving optimal peak turn out mass and maintaining and repairing bone tissue 16.In addition, low consumption of fruits and vegetables in high-risk Internet users s uggests low intake of vitamins, minerals, and fiber in these individuals. Vitamins and minerals play a crucial role in energy production, maintenance of bone health, adequate immune function, and protection against oxidative stress 17,18. Several studies have shown that proper fruit and vegetable intake can prevent health problems such as obesity and cardiovascular diseases 19-21.High-risk Internet users not only consumed too little of the recommended food groups they consumed more than the recommended daily quantities of fatty foods, fried foods, salt, and foods high in simple sugars. High fat and simple sugar intake increase the knock of being overweight or obese. Obese children and adolescents can have various adverse health outcomes, including diabetes, hypertension, dyslipidemia, and metabolic syndrome 22-24. Furthermore, obese children have a higher risk of cardiovascular mortality when they reach adulthood 22,23.The diet of high-risk Internet users, though it whitethorn meet their energy requirements, is lacking in nutritional value, and may therefore not support the growth spurt during adolescence and may cause nutrition-related health problems. High-risk Internet users drank and smoked more and had a poorer quality diet and higher frequency of meal skipping than no risk Internet users. Results from two cross-sectional studies on Korean high school students 8 and Taiwanese high school students 2 found a strong association between Internet addiction and high use of alcohol and tobacco.Alcohol and tobacco companies use the Internet to labour and advertise their products by using themes and icons of youth popular culture, games and contests, and commercially-sponsored websites and homepages 25. Therefore, because high-risk Internet users are more likely to be exposed to tobacco and alcohol advertisements, 56 The effect of Internet addiction on dietary behavior 4. Seo M, Kang HS, Yom YH. Internet addiction and interpersonal problems in Korean adolescents . Comput Inform Nurs 200927 226-33. 5. Siomos KE, Dafouli ED, Braimiotis DA, Mouzas OD, Angelopoulos NV.Internet addiction among Greek adolescent students. Cyberpsychol Behav 200811653-7. 6. Ha JH, Kim SY, Bae SC, Bae S, Kim H, Sim M, Lyoo IK, Cho SC. Depression and Internet addiction in adolescents. Psychopa thology 200740424-30. 7. Kim JS, Chun BC. sleeper of Internet addiction with health promotion lifestyle profile and perceived health status in adolescents. J Prev Med Public Health 20053853-60. 8. Choi K, Son H, Park M, Han J, Kim K, Lee B, Gwak H. Internet overuse and excessive daytime sleepiness in adolescents. Psychiatry Clin Neuosci 200963455-62. 9.Gunnell DJ, Smith GD, Frankel SJ, Kemp M, Peters TJ. Socioeconomic and dietary influences on leg length and trunk length in childhood a reanalysis of the Carnegie survey of diet and health in prewar Britain (1937-1939). Paediatr Perinat Epidemiol 19981296-113. 10. Sachar RK, Singh H, Soni RK, Singh WP, Bhatia RC, Raizada N, Sing h B. A cross-sectional study of growth parameters of rural adolescent girls of Punjab. Indian J Matern Child Health 1997821-5. 11. Vadiveloo M, Zhu L, Quatromoni PA. Diet and physical activity patterns of school-aged children. J Am Diet Assoc 2009109 145-51. 12.Kim DI, Chung YJ, Lee EA, Kim DM, Cho YM. Development of Internet addiction proneness scale-short form (KS scale). The Korean Jounal of Counseling 200891703-22. 13. The Korean Nutrition Society. Dietary reference intakes for Koreans. Seoul KokJin Co. 2005. 14. Kim WY, Cho MS, Lee HS. Development and validation of mini dietary assessment index for Koreans. The Korean Journal of Nutrition 20033683-92. 15. Savige G, Macfarlane A, Ball K, Worsley A, Crawford D. Snacking behaviors of adolescents and their association with skipping meals. Int J Behav Nutr Phys Act 2007436. 16. Petrie HJ, Stover EA, Horswill CA.Nutritional concerns for the child and adolescent competitior. Nutrition 200420620-31. 17. Wardlaw GM, Hampl JS. Perspectiv es in Nutrition. New York McGraw-Hill International Co. 2007. p. 295-463. 18. Omenn GS. Micronutrients (vitamins and minerals) as cancerpreventive agents. IARC Sci Publ 199613933-45. 19. Davis EM, Cullen KW, Watson KB, Konarik M, Radcliffe J. A fresh fruit and vegetable program improves high school students consumption of fresh produce. J Am Diet Assoc 20091091227-31. 20. Lorson BA, Melgar-Quinonez HR, Taylor CA. Correlates of fruit and vegetable intakes in US children.J Am Diet Assoc 2009 109474-8. 21. Miriran P, Noori N, Zavareh MB, Azizi F. Fruit and vegetable consumption and risk factors for cardiovascular disease. Metabolism 200958460-8. 22. Berenson GS, Srinivasan SR, Bao W, Newman WP, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med 19983381650-6. 23. Freedman DS, Dietz WH, Srinivasan SR, Berenson GS. The relation of overweight to cardiovascular risk facto rs among children and adolescents the Bogalusa Heart Study.Pediatrics they are more likely to drink and smoke than other Internet users. Furthermore, high frequency of use of tobacco and alcohol can exacerbate diet-related problems, because smoking and drinking are negatively associated with diet quality and dietary behaviors such as meal regularity 26,27. High-risk Internet users reported more irregular sleep patterns and more episodes of sleep disturbance than no risk Internet users. This is consistent with a previous study of Korean adolescents that showed that Internet addiction was associated with insomnia, apnea, and nightmare 8.In addition, sleep disturbance could increase the risk of mental health problems as well as substance abuse 6,28,29,30. Hence, high-risk Internet users are more likely to experience physical and mental health problems. This study has some limitations. First, this study was a cross-sectional study, therefore we could not confirm causal associations betw een Internet addiction and dietary behavior. Second, the questionnaire was self-reported. It is therefore possible that some of the adolescents may not have admitted to using alcohol and tobacco due to social restrictions, even though this study was anonymous.High-risk Korean adolescent Internet users had improper dietary behavior and a poorer diet quality than their no risk Internet counterparts. To ensure that the growth and development of high-risk Internet users is not adversely impacted, their diets should be supplemented with the nutrients that they are lacking. Interventions to improve both dietary behavior and treat Internet addiction may have synergistic health benefits. In conclusion, the results of this study suggest that children should be educated as to what a balanced diet and optimum physical activity routine is to remain healthy and grow.Furthermore, the government should take an active role in designing and evaluating Internet addiction-related health intervention s trategies. Given the likely adverse effects of Internet addiction on adolescents development because of poor dietary behavior, it is critical to raise sentiency about Internet addiction. Close attention should be paid to students at risk of Internet addiction, as well as students at low risk to prevent them from becoming addicted to the Internet. References 1. Tsitsika A, Critselis E, Kormas G, Filippopoulou A, Tounissidou, Freskou A, Spiliopoulou T, Louizou A, Konstantoulaki E, Kafetzis D.Internet use and misuse a multivariate regression analysis of the predictive factors of Internet use among Greek adolescents. Eur J Pediatr 2009168655-65. 2. Lam LT, Peng ZW, Mai JC, Jing J. Factors associated with Internet addiction among adolescents. Cyberpsychol Behav 2009 121-5. 3. Ko CH, Yen JY, Liu SC, Huang CF, Yen CF. The associations between aggressive behaviors and Internet addiction and online activities in adolescents. J Adolesc Health 200944598-605. Yeonsoo Kim et al. 19991031175-82. 24. Kim HM, Park J, Kim HS, Kim DH, Park SH.Obesity and cardiovascular risk factors in Korean children and adolescents aged 10-18 years from the Korean National Health and Nutrition exam Survey, 1998 and 2001. Am J Epidemiol 2006164 787-93. 25. Levy JA, Strombeck R. Health benefits and risks of the Internet. Journal of Medical Systems 20026495-510. 26. Strine TW, Okoro CA, Chapman DP, Balluz LS, Ford ES, Ajani UA, Mokdad AH. Health-related quality of life and health risk behaviors among smokers. Am J Prev Med 200528182-7. 27. Teufel NI. Alcohol consumption and its effect on the dietary 57 patterns of Hualapai Indian women.Med Anthropol 19941679-97. 28. Roane BM, Taylor DJ. Adolescent insomnia as a risk factor for early adult depression and substance abuse. Sleep 2008311351-6. 29. Yen JY, Ko CH, Yen CF, Wu HY, Yang MJ. The comorbid psychiatric symptoms of Internet addiction Attention deficit and hyperactivity disorder (ADHD), depression, social phobia, and hostility. J Adolesc Heal th 20074193-8. 30. Yen CF, Ko CH, Yen JY, Chang YP, Cheng CP. Multidimensional discriminative factors for Internet addiction among adolescents regarding gender and age. Psychiatry Clin Neurosci 200963357-64.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment